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Fast Korringa-Kohn-Rostoker coherent potential 
approximation and its application to FCC Ni-Fe systems 

H Akait 
Department of Physics, Nara Medical University, Kashihara, Nara 634, Japan 

Received 24 April 1989 

Abstract. A fast KKR CPA method is explained and its convergence properties are examined 
numerically. It is shown that a step number of N z 300, which determines the number of 
k-points used for the numerical integration in the k-space as well as the number of iteration 
steps in determining the coherent t-matrix, is sufficient for most purposes, including total- 
energy calculations. As a typical application the electronic structure of ferromagnetic Ni-Fe 
systems is calculated in the framework of the KKR CPA combined with the local spin density 
approximation, which demonstrates the feasibility of the present method. 

1. Introduction 

The coherent potential approximation within the Korringa-Kohn-Rostoker band struc- 
ture scheme (KKR CPA) was first proposed by Shiba [l] and by Soven [2] and represents 
the most sophisticated method to treat the electronic structure of disordered alloys. In 
the past, many efforts have been made to apply it to real alloy systems. In particular, 
the success of the local spin density approximation (LSD) in the studies of the cohesive 
properties of pure metals [3] was a strong motivation to investigate disordered alloy 
systems on an equally sound basis as the pure systems. However, due to enormous 
numerical problems, such an attempt, called KKR CPA LSD, has been undertaken only 
for very few systems [&lo] despite the fact that its efficiency is now well recognised. 

The main reason for this lies in the numerical difficulties in solving the K K R  CPA. To 
make this point clearer let us first look at the K K R  CPA formalism briefly. The average 
properties of disordered systems are described by the coherent t-matrix t ( E )  which is 
determined self-consistently in the following way. Consider the on-the-energy-shell part 
of the t-matrix T ( E )  of the system (so-called scattering path operator) : 

T ( E )  = - d3k [ t - ' (E)  - G,(k, E ) ] - ' .  (1.1) r ' J :  
Here the k-space integral is performed over the first Brillouin zone (BZ) of volume 
z.  GOLLJ is the structural Green function of the K K R  band structure method. The 
self-consistent condition determining t ( E )  is now written as 

c A A  (t-l - t-l + T-I)--I + c B (  t-l B __ t-' + T-l)-l = T (1.2) 

+ Part of this work was performed during repeated stays by the author at Institut fur Festkorperforschung 
der Kernforschungsanlage Jiilich, D5170 Jiilich, Federal Republic of Germany. 
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where A or B denote the atomic species, and c, (cB) and t, ( t g )  are the concentration 
and the t-matrix of the single muffin-tin potential of the A (B) atom, respectively. 
Since t is unknown initially we have to determine it iteratively. Starting from a trial 
value of t, we perform the k-space integration and see if the self-consistency condition 
is fulfilled. If it is not, we calculate an improved t from (1.2) and repeat the whole 
process over and again until self-consistency is achieved. Since all the quantities in the 
expression are matrices, e.g., of rank 9 x 9 if angular momenta up to 1 = 2 are taken 
into account, and moreover energy dependent, the k-space integral appearing in (1.2) 
represents the real troublesome problem. Typically in order to achieve self-consistency 
within the sense of CPA and LSD the BZ integral has to be calculated about lo5 times. 
Therefore a KKR CPA LSD calculation, performed in this way, will cost hundred times 
more computation time than a usual KKR band structure calculation. 

However, because of, firstly, general development of computers, especially the 
availability of supercomputers, and, secondly, several techniques which greatly improve 
the efficiency of the computation without sacrificing the accuracy too much [ll-151, 
KKR CPA LSD calculations become just feasible. It is in reality now a rather inexpensive 
kind of computation. 

This article attempts to explain a fast KKR CPA method in detail. One of the key 
points of our fast KKR CPA is the k-space integration [ l l ,  121 which is performed 
step by step in parallel with the self-consistent determination of the coherent t-matrix. 
Though the method was proposed many years ago Ell] and also has been used by the 
present author [4, 5 ,  9-12], its efficiency has not been well understood since details 
have not been published. Therefore it is worthwhile to demonstrate how it works and 
to examine the convergence properties of the procedure critically to establish it as a 
method. 

In addition to the method of the k-space integration mentioned above, we also 
employ some other techniques which are efficient not only for KKR CPA but also for 
more general electronic structure calculations. With all these techniques, together with 
the vectorisation for the supercomputers, really fast computation is now accessible; 
surprisingly, it runs much faster than our linearised version (LMTO) of the KKR band 
structure calculation. 

Section 2 is devoted to explain our fast KKR CPA technique. The convergence of the 
k-space integration employed in the actual use of this technique is fully examined in 
$3. Section 4 presents, as an example, the result of KKR CPA LSD calculations for FCC 
Ni-Fe systems. Since all the quantities, including the lattice constant, are determined 
from first-principles so as to minimise the total energy, they are analogous to and 
should have a similar predictive power as the most elaborate version of the KKR band 
structure calculations in the case of ordered systems. We summarise in $5. 

2. Fast KKR CPA method 

2.1. K K R  C P A  

We first briefly outline the KKR CPA method to make clear in what we will concern 
ourselves hereafter. For details, we refer to [12] and the references given therein. The 
Hamiltonian for the Kohn-Sham equation of a given substitutional alloy A,-,B, is 
assumed to be in atomic unit 
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where V ( v )  represents an assembly of muffin-tin potentials. The Green function of the 
system can be written in a cell-centered representation as 

where in each cell Gs is the Green function for the single muffin-tin potential in free 
space and Gb represents the multiple scattering contribution (‘back scattering’). Since 
the imaginary part of the first term GS can easily be calculated if the radial wavefunction 
for the single potential is known, our main interest focused on the second term Gb, 
which is double expanded into radial eigenfunctions of the local muffin-tin potentials: 

Gb(v + R i , r ’  + R j ; E )  = Y ~ ( ~ ) J , i ( r , E ) B L i , L ~ j ( E ) Y L l ( ~ ’ ) J , f j ( r ’ , ~ ) .  (2.3) 
LL‘ 

Here YL(A is the spherical harmonics of angular momentum L = (I,m) and J I i  is the 
radial wave function with angular momentum I for the muffin-tin potential at the ith 
site. J I i ( r )  is regular at the origin and is normalised such that it coincides with 

outside the muffin-tin sphere r > rmt. Here j ,  and h, are the spherical Bessel and Hankel 
function (h ,  = nl - i j ,  ; n, is the spherical Neumann function), respectively, and t l i ( E )  is 
the atomic t-matrix for the muffin-tin potential, tIi(E) = (-l/&) sin qIi  exp(iqli) (q,,(E) 
: phase-shift). 

In the CPA, as mentioned in $1 the average properties of the system are described 
by the coherent t-matrix t which is determined self-consistently in the sense of the 
mean field theory. We first consider an A or B atom with single site potential VA or V, 
embedded in an otherwise perfect crystal. The host atoms are now the effective atoms 
specified by the coherent t-matrix t. This is the single-site impurity problem and is 
solved by a standard method [16-201. Suppose A or B atoms are located at the origin. 
The back-scattering part Bi (i = A or B) of the Green function Gi for the perturbed 
system is calculated from the corresponding unperturbed Green function B as 

where B is given by 

Here T is the on-the-energy-shell part of the site-diagonal t-matrix of the averaged 
whole system given by (1.1). Now the self-consistent equation determining t is 

which is equivalent to the condition given by (1.2). 
In the following we discuss how to solve the self-consistent equations ((1.1) and 

(1.2)) fast enough so as to ensure that a sufficient number of iterations needed for the 
LSD self-consistency can be carried out in reasonable computing time. 
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2.2. k-space integration 

As was mentioned in $1, we perform the k-space integration and the self-consistent 
determination of the coherent t-matrix simultaneously [l 11 to overcome the main 
difficulty arising in KKR CPA. For brevity we consider a cubic crystal and take a set of 
k-points { k , }  which distribute in & of the first Brillouin zone following Weyl's uniform 
distribution [22] : 

where t,, 4, and t2 are irrational numbers with the ratio between them being also 
irrational, and [. . .] denotes the integer part. Here we take the unit of the k-vector such 
that the zone boundary in [loo], [OlO] and [OOl] directions lies on k, = 1, k, = 1 and 
k, = 1 planes. Also any k ,  which falls outside the & Brillouin zone must be omitted 
from the series. Such distribution satisfies Weyl's criterion of uniform distribution: 

1 N lim - 1 x f ( k , )  = - J f (k )d3k  
N-cc N 5 7  n= 1 

where f ( k )  is a Riemann integrable function. A similar relation holds also for a 
random distribution. However, the convergence of the LHS of (2.9) with Weyl's 
uniform distribution is far faster than the so-called Monte Carlo integration based on 
a complete random selection of k-points. Actually the convergence rate of the LHS of 
(2.9) is 1/N instead of 1/& which is expected for the Monte Carlo integration. In the 
following we fix 5 to ( d a ,  &a, 2 m a )  with a = 0.359 so as to ensure that our results 
are exactly reproducible. For finite N the result of the sum, as a matter of course, 
depends on the choice of the vector 5, especially for small N (typically for N < 50). 
Though we have no strict criterion for the choice of 5, it certainly is desirable from 
the view point of the self-consistent determination (see below) of the coherent l-matrix 
that the sum, as a function of N ,  does not deviate too much from its limiting value 
even for small N .  This can be partly attained by optimising 4 for several test cases. 
The present value for 5 is one of those chosen after such optimisation. 

The basic idea of our method is to make use of (2.9) with finite N as an approximate 
expression for an integral. Starting from small N ,  say N N 1-10, and a trial value 
for t we can continuously improve the evaluation of (1.1) of $1 by increasing N ,  i.e., 
adding additional k-points to the integration without recalculating the previous ones, 
and modifying t simultaneously and successively. The actual iteration process for the 
matrices T and t can be written down shortly as 

T, = (1 - l / n )  T,-' + (l/n) [ t i '  - Go(k,)l-' 

CA(til - t i 1  + T[')-' + CB(t< '  - t i '  f T[')-' = [y (ti;' - t i ' )  + TF'1-l 

(2.10) 

and 

(2.1 1) 

with y (y 2 1) being a parameter for optimising the convergence of the procedure. An 
alternative of (2.11) is 

c A ( ~ A  - t ,  - B[')-' + cB(tB - t ,  - ~ i ' 1 - l  = [y (t,+i - t,) - BL'I-' (2.12) 
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where B, is related to T, (and t,) through (2.6). Note that (2.11) and (2.12) are 
equivalent only when y = 1 and hence, in general, should show different behavior as 
iteration schemes. 

Since the coherent t-matrix t ,  is now dependent on n, (2.10) is not a direct 
application of Weyl's criterion, (2.9), to the integral given by (1.1). However, it is easily 
shown that, if T, and t ,  converge towards values T, and t ,  for large n, those values 
also satisfy the original self-consistent equation given by (1.1) and (1.2). The important 
point is that the convergence is usually fast, especially when the random scattering is 
strong. 

As a starting value for t we usually choose 

( C A L X '  + C B t i ' ) - '  

C A ~ A  + C B ~ B  for others. 
for d states 

t = {  (2.13) 

Correspondingly we use (2.11) for d states and (2.12) for s and p states as an iteration 
scheme. This, however, is not a strict rule. For example, if there exists a resonance, say, 
in the p states, the first alternative for tp will give a better convergence. On the other 
hand, for non-transition metal alloys for which t,, can be small the second one may 
be adequate even for d states. In any case we should try these possibilities, especially 
when the convergence is not so smooth or even it diverges. 

We also adjust y to improve the convergence. A value between 2 and 20, depending 
both on 1 (s,p,d,. . .) and on the condition (resonance, off-resonance, split-band, etc.), 
usually gives good results. Though a bigger y provides slower but smoother convergence, 
too big a value for y should be avoided; it may cost too much computer time before a 
good convergence is attained. 

It sometimes happens that the starting values for t are so poor that they make 
rather unrealistic contributions to the integral. Though the process mostly converges 
even in such cases, the convergence will be generally improved by getting rid of the 
bad history of the early steps. This is realised by implementing a weighting factor to 
each sum: 

with 

s, = s,-1 + w,. (2.15) 

Here w,  is chosen, for instance, as 

w, = 1 - a n .  (2.16) 

The procedure shown here with CI N 0.99 usually works efficiently as will be shown in 
$3. 

Sometimes, though not so often, it can happen that none of the above tricks help 
and the procedure diverges. One way to avoid such a difficult situation is to shift 
the energy origin for the structural Green function. Such shift of the energy origin 
are possible in the sense of the atomic sphere approximation (ASA) of Andersen [23] 
because the energy zero is arbitrary in this approximation. We can also use this 
approximation for the muffin-tin potential by introducing a hypothetical atomic sphere 
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which contains both the muffin-tin and interstitial regions. The atomic t-matrix is then 
evaluated at this atomic sphere, not at the muffin-tin sphere as it is usually done. 

In this case the atomic t-matrix rigorously depends on a choice of the energy origin. 
The final results, nevertheless, should be very insensitive; only small inconsistencies 
brought in either by the ASA or by the truncation of the angular momentum in the 
KKR-matrix would be responsible for any residual dependence. We can make use of 
this invariance to improve the convergence. For example, if t;' ( i  = A or B) diverges 
for certain energy, as is often seen for sp metals, it may be helpful to shift the energy 
origin of the structural Green function by A such that the pole falls outside the energy 
region of interest. 

A more elaborated way is to use an energy-dependent shift A(E), which originally 
was introduced to eliminate the energy dependence of the structural Green function for 
the LMTO scheme by Andersen [23]. For the present purpose the energy dependence 
of A(E) can be rather arbitrary and we employ it when a fixed A is not enough to 
remove all of the poles or anything which causes difficulties. Thus required shifts 
are typically 0.1-0.2 Ryd; such a shift practically does not affect the final result (e.g., 
the equilibrium lattice constant changes around 0.1% in Fe alloy cases) despite the 
inconsistency inherent in the ASA, but ensures a fast and smooth convergence. We 
notice, however, that using the ASA clearly introduces an additional approximation to 
the CPA, and hence, should better be avoided as long as possible. 

2.3. Energy integration 

Once the Green function Gi ( i  = A or B) is known the local charge or spin density is 
calculated by integrating the Green function for each spin direction up to the Fermi 
level : 

71 
dE (G;(Y,Y ; E )  + G?(Y,Y ; E ) )  . (2.17) 

Since both Gr and Gi = GY + GP are Green functions and as such analytic as a function 
of the complex energy E in the upper complex half plane, the same is also true for G:. 
We can, therefore, deform the integration path into the upper half plane [21], which 
greatly improves the accuracy of the integration since G:(Y, Y ; E )  is quite structureless 
for E apart from the real axis. On the other hand, GS is integrated for convenience along 
the real axis, since in this case only the regular solution of the radial wavefunction 
J is needed. Otherwise we also need the irregular solution which is more difficult to 
calculate. Using the expression for the Green function of a single muffin-tin potential, 
we calculate the first term of the RHS of (2.17) as 

(2.18) 

To perform these energy integrations, we have to calculate radial wavefunction J ( r ,  E )  
by solving the Schrodinger equation on each energy mesh point. Moreover, these 
energies are complex in the present scheme. Though not many mesh points, typically 
3W0,  are needed for the integration of GP, it is still desirable to decrease the number 
of the energy points for which we have to solve the Schrodinger equation. 

A simple way to realise this is to expand the energy dependence of the normalised 
radial wavefunction J" ( r ,  E )  = Q ( E ) J ( r ,  E )  into the Chebyshev polynomials. Here R is 
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a energy dependent normalisation constant and the normalisation is 

Jrmt r2dr l j  (r ,E)I2 = 1. (2.19) 

(Such normalisation is necessary because J ( r ,  E )  itself is not a smooth function of the 
energy, especially near a resonance.) Now we expand 13 itself, for 
convenience) in a given energy interval E ,  < E < E,  as 

(rather than 

(2.20) 
i=O 

where the Tn are the Chebyshev polynomials of nth order, the An(r)  are expansion 
coefficients and e is defined by e = (2E - E ,  - E 1 ) / ( E 2  - El). The energy integrations 
are then performed on T,(E) B ( f )  (i = 1,. . . , n) for the ‘back-scattering’ terms and the 
corresponding ones for the single-potential terms. Since the polynomials are analytic, 
the expansion on the real axis is sufficient even for the complex energy integral. These 
integrals define a series li (i = 1, . . . , n )  which contains the imaginary part of the 
integrals related to Ti. Expansion coefficients Ai(r),  on the other hand, are expressed as 

(2.21) 
j =O 

where the f j  are given by 

(2.22) 

and the Wj are weighting factors: Wj = l / ( n  + 1), if j = 0; Wj = 2/(n + 1), otherwise. 
By use of these expression the charge (or spin) densities are obtained in the form 

(2.23) 

Since the r-dependent expansion coefficients A,(r )  do not enter the final expression 
(2.23), it obviouly is not necessary to evluate (2.21). The second summation term of 
(2.23) simply gives a weight to the radial wavefunction at the energy e j .  Since the 
Chebyshev expansion up to n e 8-10 is sufficient for an energy interval around 2 Ryd, 
it considerably reduces the computational work. Moreover, it enables us to perform 
the complex energy integral with real energy wavefunctions and also gives a compact 
and transparent way of calculating the charge densities. 

2.4.  Vectorisation 

In our fast KKR CPA method, each k-point does not contribute independently to the 
final result because the first k-point modifies a given coherent t-matrix and thus affects 
the result by the second k-point, and so on. For this reason the process cannot directly 
be vectorised. However, if we form the k-points into bunches such that each of them 
contains a certain number of k-points, we can vectorise the procedure by using a 
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fixed coherent t-matrix within the bunch. It is also clear that each energy contributes 
independently in the procedure, and hence, is vectorised. 

We usually bunch 9 k-points with 39 complex energies. The whole procedure is 
then vectorised with vectors of length 351 (9 x 39), long enough to derive full advantage 
of the vector processing. We must take care, however, that every step of the procedure 
should work on these vectors. For example, matrix inversion in (2.10) is taken not by 
vectorising the column or row vectors of the matrix but by dealing with each element 
as a vector, since it really is. With such care an acceleration by a factor of 30-40 
is rather easily attained; typical computing times with 500 k-points are about 1 s on 
NEC SX-2N (1 processor, 4 multi-parallel-pipelines), around twice as much on CRAY 
X-MP/22 (2 processors, but likely single-tasking), for one LSD iteration cycle (i.e., the 
CPA iteration for all energies and spins with the construction of charge/spin densities). 

3. Convergence properties 

Whether our iteration procedure is practical or not depends on how fast the numerical 
integration of (2.9) converges. Probably the worst case is the pure limit, where for 
concentrations cA or cB = 0 the integrand becomes singular for real energies. Though 
we can mostly avoid these singularities by introducing the complex energy integration, 
the treatment at the Fermi level is somehow a problem. We usually retain a small 
but finite imaginary part, typically (in atomic units), to the Fermi level in order 
to remove the singularity. For such a small imaginary part, however, the integrand 
becomes nearly singular, though it is still Riemann integrable. A bigger imaginary 
part, which might allow us to evaluate the integral more easily, would certainly bring 
in another source of numerical error. For this reason it is sometimes argued that a 
simple sum like (2.9) will converge very slowly, if it ever converges. A critical check 
of the convergence is, therefore, to apply our integration scheme to a pure system. We 
first examine such a case in the following subsection and discuss the concentrated alloy 
cases later. 

3.1. Pure limit 

Pure Ni is a especially difficult test of our method since the density of states at E ,  
is high and strongly structured. Figure 1 shows the ‘back-scattering’ contribution (the 
second term of (2.17)) to the densities of minority (down) spin states at the Fermi level 
of Ni as a function of the number N of k-points. The remaining contribution (Green 
function for the single muffin-tin potential) to the densities of states are independent 
of N .  An identical Ni potential is used for all cases. As was mentioned previously a 
small imaginary part, (in au) in the present calculation, is attached to the Fermi 
level to avoid the divergences. The horizontal axis is scaled by N 2  for convenience. 

Admittedly the convergence is not fast in this limit. However, the fluctuations 
observed for large N remain still small compared with the total density of states (about 
23 states Ryd-’/atom) which is obtained by adding the single potential contributions 
to the present ‘back-scattering’ ones. 

The situation is completely different for quantities where in addition to the k-space 
integration also an energy integration is involved, such as charge and spin densities. 
In this case the integrand for the k-space integration contains only step-like functions 
even for real energies. This makes the convergence much better. Figure 2 shows the 
calculated magnetic moment of pure Ni for various {k,}  as a function of the number 
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Figure 1. The 'back-scattering' contribution (see text) to the densities of down (minority) 
spin states at the Fermi level of Ni as a function of the number N of k-points. The 
horizontal axis is scaled by N 2 .  

N of k-points. The energy integral was performed along a complex energy path in 
the upper half plane. It started from sufficiently below the bottom of the band, going 
along a semielliptical circle, and ended at the Fermi level with a small imaginary part. 
It is shown that the integration converges fast without any noticeable fluctuation for 
N greater than about 300. 

I \  
Monte Corio 

r .  

L-y------ ; 

r 

9 144 576 1296 2304 

t / _i , ,,/,'' /,,, ,,,,"' ,,, ,,,,,'' ,, ,,,,,'' 

r 

9 144 576 1296 2304 

Number of k-points 

Figure 2. Calculated magnetic moments of Ni for various { k n }  as a function of the number 
N of k-points. Results obtained by two different Weyl's distributions, one of them starting 
from n = 1 of (2.8) and the other from n = 2000, and that obtained by the Monte Carlo 
sampling are displayed. The horizontal axis is scaled by N 2 .  

A similar method of numerical integration is the Monte Carlo method. Though 
we did not use it in actual calculations because of its slower convergence, as was 
mentioned in $2, it is worthwhile comparing numerically the Monte Carlo integration 
method with our method of using Weyl's uniform distribution; the former, exhibiting 
a typical l /@ fluctuation, is also given in figure 2. All results are given in table 1. We 
conclude that the number of k-points sufficient for a reliable results for, at least, the 
magnetic moment (due to its relatively small value this is already a difficult quantity 
in Ni) is as small as about 100. 
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Table 1. Calculated magnetic moments (psiatom) of Ni with a frozen potential for various 
{ k n }  as a function of the number N of k-points. Here ‘Weyl I’ corresponds to the series 
given by (2.8) with N = (&a, &a,2fla), where a = 0.359, and n = 1,2 ,... (see text), 
whereas ‘Weyl 11’ corresponds to that with n = 2000,2001,.. .. The result obtained by the 
Monte Carlo sampling is denoted by MC. 

Magnetic moment (pB/atom) 

N Weyl I Weyl I1 MC 

9 
36 
81 

144 
225 
324 
44 1 
576 
729 
900 

1089 
1296 
1521 
1764 
2025 
2304 

0.725 
0.593 
0.562 
0.599 
0.614 
0.604 
0.607 
0.604 
0.601 
0.599 
0.600 
0.599 
0.597 
0.597 
0.597 
0.597 

0.811 
0.686 
0.628 
0.607 
0.607 
0.605 
0.597 
0.596 
0.594 
0.594 
0.593 
0.595 
0.597 
0.594 
0.595 
0.597 

0.778 
0.539 
0.550 
0.577 
0.602 
0.639 
0.622 
0.615 
0.600 
0.604 
0.592 
0.595 
0.595 
0.588 
0.588 
0.587 

It must be noticed that any quantities related to the ground state properties of 
the metallic systems are obtained through energy integrations. In other words, only 
such quantities can be true ground state properties in a sense of the density functional 
theory. For this reason our results showing good convergence for the magnetic moment, 
which is a typical ground state property, are quite satisfactory. 

3.2. Alloy cases 

In this subsection we examine the convergence of the iteration procedure (2.10)-(2.12) 
for concentrated alloys. Figure 3 shows the coherent t-matrices at the Fermi level E ,  
of the minority spin states of Ni,,,Fe,, as a function of the number of steps N of the 
procedure (2.10)-(2.12). Here only de and dy components are displayed since others (s 
and p components) are virtually unchanged with increasing N for the present system. 
In general the convergence of the coherent t-matrix is slowest at the Fermi level for the 
same reason as discussed previously. Our calculation, nevertheless, shows fast enough 
convergences. From figure 3 it is concluded that around 300 k-points are sufficient to 
ensure converged results. 

More difficult quantities may be the densities of states at the Fermi level. Though 
physically less transparent than energy-integrated quantities, those quantities given at 
the Fermi level are still interesting since they contain approximate information about 
low lying excitation of the system. Figure 4 shows the densities of minority spin states 
at the Fermi level plotted in a similar way as the coherent t-matrices. Again only the 
‘back-scattering’ contributions to the density of states are considered. For this case a 
choice of the parameter z which controls the weighting factor (2.16) becomes important. 
In other words a bad history brought in at an early stage of the iteration procedure 
will, if the weighting factor is omitted, affect the densities of states considerably even 
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Figure 3. Coherent t-matrices at the Fermi level of down (minority) spin states of 
NiogFeozas a function of the number of steps N of the procedure given by (2.10)-(2.12). 
Only de and d) components are displayed. The horizontal axis is scaled by NZ. 

after many iteration cycles have been repeated. We found that we should use a > 0.97 
to ensure the convergence within a reasonable number of iteration steps. However, 
the convergence of the coherent t-matrices is much less affected by the choice of the 
weighting factor. 

Finally we examine the total convergence of the whole procedure, i.e., KKR CPA 
plus LSD. Again we take the Ni,,,Fe,,, system as an example. Figure 5 shows the 
calculated total magnetic moment. Now the self-consistent determination of both 
the coherent t-matrices and the potentials were performed. The calculations were 
performed for every N = 9n2 with n = 2, . . . ,  16. Each calculation, which started 
from atomic potentials, required around 30-50 big LSD iteration cycles for charge 
and magnetisation self-consistency with Chebyshev acceleration [24]. Final RMS errors 
in charge (spin) densities thus attained become less than lop6 (in au). It might be 
worth noticing that the convergence with respect to N is now even better than with a 
fixed potential; the self-consistent determination of the potential during the iteration 
process automatically corrects for errors occurring, for example, in a frozen potential 
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Figure 5. Calculated total magnetic moment as a function of the number of steps N of the 
procedure given by (2.10)-(2.12). The self-consistent determination of both the coherent 
t-matrices and the potentials are performed. 

calculation. We conclude that our method with N E 30&500 is enough for most 
practical purposes. 

4. Electronic structure of the Ni-Fe system 

This system was first dealt with by Hasegawa and Kanamori [25] within the framework 
of the tight-binding CPA combined with the Hartree-Fock approximation. The local 
magnetic moment as well as the saturation magnetisation and the electronic specific 
heat coefficient were discussed successfully by these authors. Later KKR CPA, without 
potential self-consistency, was applied to the same systems and the transport properties 
were discussed by the present author [ l l ] .  A full self-consistent calculation, KKR CPA 
LSD, was first performed for Nio,65Feo,35 by Johnson, Pinsky and Stocks [13]. More 
intensive calculations on this system have been performed by the present author; brief 
reports are given elsewhere [14, 151. A similar calculation also has been reported by 
Pinsky, Staunton and Johnson [26].  

In this section we demonstrate the application of our fast KKR CPA LSD method 
to this standard magnetic alloy. Figure 6 shows the change of the total energy with 
varying the lattice constant a of Ni, ,Fe, , .  We adopt the expression for the total energy 
which was given by Janak [27] for pure metals and was adapted to disordered alloys by 
Johnson et al [2S]. The core contribution to the total energy is rigorously included. The 
energy origin of the structural Green function is shifted by f0.1 Ryd to avoid the zero 
of the p components of the t-matrix (see §2.2), which happens at the Fermi level for a 
certain concentration range. (We found later that this value could be much smaller in 
absolute terms, e.g. f0.01 Ryd, for the present systems; the calculation would predicts 
a slightly (0.12%) smaller value for the equilibrium lattice constant in that case.) We 
use N = 500 and a = 0.99 for the iteration procedure. From this figure we determined 
the equilibrium lattice constant of Nio,,Feo,, in the present calculation to be a = 6.624 
(in au). 

A similar calculation for Ni , ,Fe , ,  is performed to demonstrate the dependence of 
the equilibrium lattice constant on N ,  as is shown in figure 7. Four different values of 
N (N=500, 800, 1000, 1200) are used to calculate the total energy. Since the difference 
in the total energy among them is much bigger than the systematic change in the total 
energy with varying the lattice constant, each curve is arbitrarily shifted so that the 
direct comparison of the position of the relative minima of the total energy among 
them becomes possible. From this figure we conclude that the ambiguity in the lattice 
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Figure 6. Change of the total energy with varying the lattice constant of Nio.gFeo.2. 
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Figure 7. Total energy of Nio.5Feo.j versus lattice constant for different N ( N :  the number 
of k-points). A small dependence of the equilibrium lattice constant (shown by T) on N is 
demonstrated. Each curve is shifted so that the direct comparison among them is possible. 

constant obtained in our method is less than 0.03 YO, which of course is much smaller 
than the ambiguity coming from the LSD approximation, and may be safely neglected. 

In figure 8 we show the band structure of Nio,,Feo,2 along the TX line. Here we 
plotted a spectral function A ( E , k )  defined by 

1 dZ(E,k)  

7 1 .  dE 
A ( E , k )  = -- Im 

where 

Z(E,k)  = In det [ -E  + (k  + g ) 2 ]  + lndet (t-' - Go) 

+ c,lndet [l + T ( t i 1  - t-')I + c,lndet [l + T(t,' - t- ' )]  (4.2) 

measures the total number of states below the real energy E. In order to make such 
plots possible even for weak scattering limits, where the spectrum shows 6-function-like 
spikes, we attached a rather big imaginary part (in au) to the real energies. Figure 
9 shows the total and component (partial) densities of states. The component densities 
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Figure 8. Three-dimensional plots of the band structure of NiosFeoz along the TX line for 
(a) the majority and (b )  the minority spin states. The spectral functions A ( E , k )  defined by 
(4.1) are plotted. A rather big imaginary part (in au) is attached to the real energies. 

of states are calculated inside the muffin-tin sphere at each site. Note that the total 
density of states here is not an average densities of states of the component densities of 
states but that obtained directly from the k-space summation of (2.9). As was pointed 
out by Hasegawa and Kanamori [25], the alloying effects are pronounced only for the 
down (minority) spin band. For the up (majority) spin band the difference between Ni 
and Fe occurring in the Hartree potentials is almost cancelled by the difference in the 
local exchange splitting. Therefore figure 8(a) shows essentially the same unperturbed 
majority band structure as pure Ni, whereas the minority band is strongly broadened 
in the vicinity of the Fe resonance. The calculated saturation magnetisation is 1.01 
,u,/atom and the local magnetic moments are 0.64 and 2.54 pB for Ni and Fe sites, 
respectively. 

-0.6-0.4-02 0 0.2-0.6-04-0.2 0 0.2-06-0.4-0.2 0 0 2  

Energy re la t ive to Fermi energy (Ryd J 

Figure 9. Total and component densities of states of Nio.sFeo.2. The component densities 
of states are those calculated within the muffin-tin sphere at each site. The total densities 
of states are obtained by the direct k-space summation of (4.2) and hence include the 
contributions from both inside and outside the muffin-tin sphere as well as some of the 
contribution from higher angular momenta. 

Finally we show the concentration dependence of the lattice constant, the total 
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and local magnetic moments, the hyperfine fields and the Mossbauer isomer shifts of 
Ni,-,Fe, systems. Some discussions of the results, especially in connection with the 
Invar alloy, are given elsewhere [29]. 

Figure 10 shows the concentration dependence of the lattice constant. It constantly 
increases with increasing Fe concentration. The main reason of this volume expansion 
lies in the similar increase of the total magnetic moment (see the magnetisation shown 
in figure 11). In other words, an Fe atom has a bigger volume than a Ni atom because 
of the bigger local magnetic moment of the Fe atom (figure 1 l), and hence, replacing Ni 
atoms by Fe atoms causes a volume expansion. Another possible source of the volume 
expansion is an alloying effect. However, since non-magnetic Fe has a smaller atomic 
volume than Ni [3], we naturally expect a volume contraction if the system is kept non- 
magnetic. From this we conclude that the magnetic effect dominates the equilibrium 
lattice constant for this system. Comparing the present result with experiments, we 
may say the calculation well explains the trends of concentration dependence of the 
lattice constant except in the Invar region (see below). 

20 0 40 60 

a t  % Fe 

Figure 10. The equilibrium lattice constant of Ni-Fe as a function of Fe concentration. 
Open circles: calculated results; open triangles: experimental results 

+ 
aJ : ,. 
c n v, 

Magnet isation 

NI site 

0 L------4 60 at .% 40 Fe 20 

Figure 11. Calculated local magnetic moments at Ni and Fe sites and the magnetisation of 
Ni-Fe. 
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For x N 0.7 we obtain two stable solutions for the system, one ferromagnetic and 
the other non-magnetic. Each of these states has a different lattice constant as is 
seen in figure 12, which plots the total energy of Ni , ,Fe, ,  as a function of the lattice 
constant; the non-magnetic state has lower energy in this case. We thereby expect 
that a first-order transition from ferromagnetic to non-magnetic state take place at a 
certain concentration near x = 0.7. This seemingly contradicts experimental observation 
which shows a rather moderate transition. For this point, we suggested that either 
our treatment is oversimplified or the experimental situation is different from what is 
normally assumed [29]. We give further details in [29]. 

1.5- , , 

I 

Non-magnet IC 

0 5  

I I .  

0- 
I C  
0.3 6.6 6.1 

Lattice constant (nul 

Figure 12. Total energy versus lattice constant for Ni0.3Fe0.7. Two local minima correspond 
to the equilibrium lattice constant of non-magnetic (1: 6.52 (in au)) and ferromagnetic 
(2. 6.70 (in au)) states, respectively. Note that the path along the ferromagnetic state does 
not join smoothly to that along the nonmagnetic state. 

The hyperfine fields at Ni and Fe nuclei are shown in figure 13. As is well known, 
the experimental hyperfine field of Fe can not be well reproduced by calculation based 
on LSD [20, 301. For this reason, we have to restrict ourselves to a discussion of the 
general trends. The hyperfine fields of both the Ni and Fe site increase in absolute with 
increasing Fe concentration. This is due to the increase of the magnetisation which 
enhances the negative polarisation at the nuclear position produced by tail parts of 
d wavefunctions centred on the neighbouring sites (transfered contribution) [20, 301. 
For transition elements another important contribution to the hyperfine field arises 
from local exchange splitting which, roughly speaking, is proportional to the local 
magnetic moment (local contribution). In the present case, however, this effect is not of 
primary importance for the overall trends because the local magnetic moments rather 
weakly depend on Fe concentration, especially for Ni atoms, whereas the magnetisation 
increases more than a factor two. For Fe, the decrease in the local magnetic moment 
with increasing Fe concentration, leading to a smaller local contribution to the hyperfine 
field, partly cancels the larger transfered contribution. The agreement of the present 
results with experiments is fairly good as far as the concentration dependence of the 
hyperfine fields is concerned. Some discrepancies seen at the critical region where the 
ferromagnetic state becomes unstable (x > 0.6) are related to the failure of the present 
treatment in this region, mentioned in the last paragraph. 

From a numerical point of view, calculation of the Mossbauer isomer shift may 
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Figure 13. Concentration dependence of the hyperfine fields of Ni-Fe system. Open circles: 
calculated results for the Ni site; full circles: calculated results for the Fe site; open 
triangles: experimental results for the Ni site; full triangles; experimental results for the Fe 
site. 

provide the most critical check of the accuracy since it counts a small deviation, which 
amounts only to one part of IO6, of the charge density at the nuclear position. The 
present calculation gives (figure 14) a fairly smooth curve without any scattered points 
for the concentration dependence of the isomer shift, proving its reliability. Because of 
their experimental importance, we only give the calculations for Fe nucleus in figure 
14. It decreases with increasing Fe concentration, implying that the charge density at 
the nuclear position increases. From a general discussion developed previously for the 
isomer shift of impurity systems [32], we expect that it is a directly reflection of the 
increase in the valence s charge. Since no experimental data are available by now, it 
is highly desirable to have experimental data for Ni-Fe systems in order to check the 
theoretical results. 

- 
m .  

60 40 20 0 
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Figure 14. Concentration dependence of Fe isomer shift of Ni-Fe system. The isomer-shift 
calibration constant of a = -0.24~~: mm SKI is used following a similar calculation for 
impurity systems (see [32]). 

We will not discuss the electronic structure of this system in further detail because 
it is not our principal aim here. We only stress that our apparently crude method of 
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solving the CPA problem actually turns out to be sufficiently accurate for calculating 
many physical quantities which are otherwise very difficult to deal with for disordered 
systems. 

5. Summary 

A fast KKR CPA method has been explained in detail. The convergence properties of 
the procedure used in the method are fully examined numerically. It is shown that a 
step number of N N 300-500, which determines the number of the k-points used for 
the numerical integration as well as the number of iteration steps in determining the 
coherent t-matrix, is sufficient for most purposes, including total-energy calculations. 

Some other techniques which generally improve the convergence, for instance the 
introducing of the weighting factor, are also presented. The method is applied to 
Ni,-,Fe, systems to demonstrate how it works. The calculated total energy versus 
lattice constant curve, the band structure, the densities of states are all quite reasonable 
in comparison with the corresponding calculation for pure systems. The concentration 
dependence of the lattice constant, the local and the total magnetic moments, the hy- 
perfine fields and the isomer shift have been also calculated with reasonable agreements 
with existing experimental data. 

Our observation obtained through those numerical tests is the following. First, our 
k-space summation is much better than one might think and, second, the remaining 
inaccuracy originating from, say, the small number of the sampling points after all 
does not degrade the results because of the self-correcting properties of the iteration 
process. 

In conclusion our numerical technique together with the rapid development of 
supercomputers makes KKR CPA LSD calculations really fast. A typical supercomputer 
can run each big LSD iteration cycle in 1-1.7 CPU s with our fast KKR CPA method (with 
500 k-points), which compares very well with the usual band structure calculations 
for ordered systems. Thus KKR CPA LSD calculations are not more time consuming 
than normal band structure calculations, if the present methods are used. Finally we 
point out that our method is applicable to a large class of problems where a numerical 
integration for an integrand with unknown parameters which have to be determined 
self-consistently is necessary. 
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